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Photon propagation in a plane-wave field 

Ian Affleckt 
Physics Department, University of British Columbia, Vancouver, BC, Canada, V6T 2A6 

Received 18 August 1987 

Abstract. Experiments have been proposed to observe non-linear QED effects using intense 
plane-wave fields. An external photon propagating in the field develops an index of 
refraction and a reversed polarisation component. We calculate simple analytic expressions 
for these effects in the low-energy low-intensity approximation and compare with the 
constant crossed-field limit and with numerical results. 

Although calculations of non-linear QED effects are as old as QED itself, it has only 
recently become feasible to observe some of these effects experimentally. The proposed 
experiments [ 13 would involve high-energy electrons (presumably produced at the 
Stanford Linear Collider) colliding with an intense focused pulsed optical laser. A 
Lorentz boost factor of about lo6 in the centre of mass frame would raise the electric 
field intensity, of about l O I 3  V m-I, to the threshold for non-linear effects, e E / m 2 =  1. 
First round experiments would study non-linear Compton scattering involving coherent 
adsorbtion and emission of laser photons. An increase in laser intensity by two or 
three orders of magnitude would allow the observation of strong field effects on the 
propagation of external photons. These effects are weaker because they require the 
production of a virtual e+e- pair which must interact with the plane-wave photons 
(see figure 1). An external photon develops an index of refraction which may be 
observable via Cerenkov radiation [ 2 ]  emitted by electrons travelling through the laser 
beam. An external photon can also adsorb or emit a pair of laser photons, switching 
its polarisation. 

This index of refraction was calculated analytically for constant crossed electric 
and magnetic fields [3] (and also for a constant magnetic field [4]). The analogous 
calculation for a plane-wave field is considerably more complicated. The photon 
propagator to first order in a but to all orders in e E / m * ,  is given by the bubble graph 
of figure 1. Here, the bold curve represents the exact electron propagator in the 

Figure 1. The photon propagator to lowest non-trivial order in a but to all orders in eE. 
The bold lines represent the exact electron propagator in the background plane-wave field. 
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background plane-wave field. The exact electron propagator is known but, nonetheless, 
the calculation of this graph is extremely laborious [ 5 ]  and requires numerical integra- 
tion. It is the purpose of this paper to give simple analytic formulae, valid in the 
low-intensity low-frequency limit. Comparison with the numerical results [ 5 ]  indicates 
that the approximation is good even for intensities and frequencies of order one 
(compared to the electron mass). Apart from the index of refraction, we also calculate 
explicitly the polarisation states, give the polarisation flip amplitude, and examine the 
crossover from the constant field limit at low frequencies to a high-frequency limit in 
which the external photon is only sensitive to the average squared laser field. This 
latter limit would be realised experimentally. 

The low-intensity and low-frequency approximation to this problem can be derived 
from the Euler-Heisenberg Lagrangian: 

L = -+F’ + ( a 2 / 4 5 m 4 j [ $ (  F 2 ) 2  +:( F .  fi)2] 
where F 2 =  F””F,,  and F,,, is the dual field. The electromagnetic field, F,,, is 
composed of the laser and external parts: 

F = FL + Fe,. 

To study the propagation of (low-intensity) external light through the laser field we 
may expand L to second order in Fe, or, equivalently, study the modified Maxwell 
equations which are linear in Fe, (but not FL):  

L =  - : F : , + ( 2 a 2 / 4 5 m 4 )  

x [ ~ F ~ F ~ , + ( F , .  F , , ) ~ + ; ( F ~ .  F , ) ( F ~ , .  F e X ) + i ( ~ ,  - 

FLPY = exp( -ip . x) f , .  + cc 

Using the fact that F;”a,FLAp=ppFtf” = 0 for a plane wave: 

(1) 

where fpy is constant and cc denotes complex conjugate, we obtain the modified 
Maxwell’s equations: 

a , F ~ x ” + 2 p F ~ p F L .  a ,Fex+@:pFL.  a,F,,=O ( 2 0  j 
where p = ( a / 4 5 ~ ) ( e / m ~ ) ~ .  (We follow, more or less, the notation and units of [ 4 ] ;  
in particular a = e2/47r = 1/137.) 

We consider first the case of a circularly polarised laser field, propagating in the 
z direction, for which: 

fog = e, 

AJ ‘lJkbk b = Eo(-i, 1 , 0 ) / 2 .  

e = E,( 1, i, 0 ) / 2  

Here e, and b, are the complex electric and magnetic fields and E,  is their amplitude. 
Since b, = -ie, for circular polarisation, it follows that the dual field amplitude is simply 
related to the field amplitude by - 

fw = -if,” 

and equation ( 2 )  reduces to 

d,FK + p [ ? ( f v p f * A p  + f * ” , f A P )  - $ f Y F f A p  exp(-i2p - x )  + c ~ ] a , F , ~ ~ ~  = 0.  ( 2 6 )  
We will find an exact solution of this equation of the form 

F,,,, = f L v  exp( -ik . x)  +Lv exp[ -i( k - 2 p )  x] + f i y  exp[ -i( k + 2 p )  . x ]  + cc 
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where f represents the incoming external photon and f * represent processes in which 
the external photon emits or adsorbs two laser photons. We express the f” in terms 
of polarisation vectors E‘ and momenta 

f = E ;  k ,  - E :  k,  

and similarly for f * with k replaced by ( k * 2 p ) .  We choose the gauge, a,Ap = 0. 
Equation ( 2 b )  then reduces to five complex algebraic equations upon collecting the 
coefficients of exp( -ik . x),  exp[-i( k f 2 p )  * X I ,  exp[ -i( k * 4 p )  - x]: 

k 2 ~ o p + 1 1 p k ~ ( f Y w ~ o * f *  * k + f * ” p & o *  f .  k )  

-3pk,Cf’,&-.f.k+f*”’~+.f*.k)=O ( 3 )  

Here we have introduced the shorthand 

E * f *  k =  E”f,,k” k * f * f * k = kd””fY,kA 

and used p”f,” = 0. The upper or lower expression in the brackets goes with the + or 
- sign, respectively. Note that 

k .  F .  F *  k k;E2+ k2B2 -2kok ( E  x B )  - ( k .  E ) ’ -  ( k  * B ) 2 .  (6) 

For a plane wave, travelling in the z direction, this reduces to 

k .  F .  Fa k = E 2 [ k ; +  k2-2kok, - kZ, - k:] = E’(k0- k,)2. ( 7 )  

For circular polarisation, expressing F in terms of the complex amplitude, f, we find 

k .  Fe F .  k = 2 k .  f .  f * .  k + [ k . f .  f .  kexp( -2 ip .x )+cc ] .  

Since k .  Fe F .  k is constant, this implies 

k *  f .  f .  k=O 

k .  f .  f * *  k = E i ( k o - k , ) 2 / 2 .  

We can find solutions of equations ( 3 ) - ( 5 )  by choosing 

& + @  = o  (9a)  eo, = k ,  f E - ”  = A - k ,  f *”, 

or 

E-”  = O  ( 9 b )  EO” = k,f* E+” = A+k, f ’” 
where A* are constants to be determined. Equation (5) is satisfied identically, due to 
equation ( 8 a ) .  Equation ( 4 )  determines the amplitude A*: 

[ (k*22p)2+I lpk*  f .  f *  k ] A * = 3 p k .  f * f .  k (10 )  

and equation ( 3 )  determines the index of refraction: 

[ k 2 + I l p k *  f .  f *  * k ] [ ( k * 2 p ) ’ l 1 p k . f . f r .  k ] = ( 3 p k .  f . f ” -  k)’. ( 1 1 )  
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These two different solutions are in  fact the same, with k translated by 2p. In both 
cases there are two Fourier modes, with momenta differing by 2p. In general we expect 
two independent solutions of equations ( 2 b ) ,  or of equations (10 )  and ( 1 1 )  with a 
fixed sign, corresponding to two different polarisations. 

We now wish to consider two limits of the above results. The first is the limit p + 0, 
or more accurately, 

k * p < ( p k *  f *  f * *  k. 

The plane wave then reduces to constant crossed electric and magnetic fields, a case 
which was considered in [ 3 ] .  

In this limit the two solutions are 

k * + l l p k *  f -  f * .  k = * 3 p k * f *  f * .  k ( 1 2 a )  

A = * l .  (12b)  

The two (linear) polarisations are, from equation (9),  

E ' *  = kvFL* E ' ~  = kuFLp. 

Upon making a guage transformation, so that E*' = 0, these become 

E ' =  -wE + ( B  x k ) +  k,k/w E' = -wB - ( E  x k )  + k,k/w. 

Here we have chosen FL as in equation (1) with p = 0. The index of refraction, n, for 
each polarisation, defined by wn = lk(,  is 

n = 1 +( ; ) ( 2 a / 4 5 r ) ( e E 0 / m 2 )  sin4(6/2) (14 )  

where 6 is the angle between the propagation direction of the laser and external 
wavefields. For kcc - 5  6 = .n, i.e. the external plane wave travelling antiparallel to 
the laser, these reduce to: 

€"E E 2 K  B. 

The maximum effect occurs for antiparallel momenta and perpendicular polarisations. 
These results were obtained previously for constant crossed fields [3]. 

The other limiting case that we will consider is 

k - p > > p k .  f *  f * *  k 

the limit of high frequency, compared to the intensity. (Of couse, both the frequency 
and the intensity must be small compared to m for the Euler-Heisenberg approximation, 
which we are using, to be valid.) In this limit we obtain a single solution of equation 
( 3 ) ,  for each sign: 

k 2 + l l p k *  f .  f * *  k = O  ( 1 5 ~ )  

A * = 3 p k .  f . f "  * k / ( * 4 p k . p )  IA*i<< 1 .  ( 15b)  
Equation ( 1 5 a )  implies that the index of refraction is the average of the two obtained 
in the opposite limit p + 0: 

n = 1+(11a /45 .n ) (eE , /m2)  sin4(O/2). ( 1 6 )  
Effectively the laser polarisation is rotating so quickly that the external photon averages 
the square of the laser field. Again specialising to the case where the external photon 
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is travelling antiparallel to the laser, the two polarisation vectors, k, f @” and k, f+”  = 
k J +  ””, correspond to circular polarisations with spin respectively parallel or anti- 
parallel to the laser photons. Thus, when the spin of the external photon is parallel 
to that of the laser photon, there is a small amplitude for the external photon to emit 
two laser photons and flip its spin to conserve angular momentum. In the other case, 
when the spin of the external photon is antiparallel to that of the laser photon, there 
is a small amplitude for adsorption of two laser photons with an accompanying spin flip. 

The index of refraction was evaluated [5] without use of the Euler-Heisenberg 
approximation, from the graph of figure 1. It was found from the numerical results 
[5], that 

n - 1 = 7.8 x x 3 2 r a  ( eEo/ m 2 ) 2  

at low frequencies and intensities. This agrees with our equation (16) to better than 
1%, providing a consistency check on both the numerical and the analytic calculations. 
The low-frequency and weak-field conditions for the validity of the Euler-Heisenberg 
approximation are k . p / m 2 < c  1, e 2 k .  f a  f *  k / m 6 < <  1. (Note that these are the only 
two gauge and Lorentz invariants that can be constructed from a plane-wave field with 
p 2  = 0 and k2 = 0, in lowest order.) It was found from the numerical evaluation [ 5 ]  
that equation ( 1 5 a )  was a fair approximation for 

0.1 < J k .  f .  f * k /  k .  p = eEo/mwL< 1 

2p * k / m 2  = 4wwJ m2 s 1. 

We now briefly consider the case of a linearly polarised laser. The laser field can 
still be written as in equation (1) but now the electric and magnetic field amplitudes 
are real 

b, = Eo(0, 1,O). 

We again seek a solution of equation ( 2 a )  by expanding Fe, in Fourier modes, 
exp[-i( k + 2np) * XI, but now we find that it is necessary to keep an infinite number 
of modes, with arbitrary n. The fact that only two modes occurred for circular 
polarisation was essentially a result of angular momentum conservation, together with 
the low-frequency approximation inherent in our Euler-Heisenberg approach: the 
external photon travelling antiparallel to the laser could not adsorb or emit more than 
two laser photons without violating angular momentum conservation, in an s wave 
state. No such constraint arises for linear polarisation since it corresponds to a 
superposition of both photon spin states. We now find that all Fourier modes have 
the same polarisation, either k,f’“ or k p f p Y ,  but an infinite set of coupled equations 
arises for the amplitudes of the different Fourier modes. In  the low-frequency limit, 
we get the same result as before, corresponding to constant crossed fields. In the 
opposite limit, all higher Fourier modes (with n # 0) are small, and to lowest order 
we can replace fLPVFLAp in equation ( 2 a )  by its value averaged over one period, and 
similarly for FLFL. The equation then becomes the same as for constant crossed fields, 
except that the constant field squared is replaced by the auerage of the field squared. 
Thus we obtain the results of equation (14 )  except that E :  is replaced by ;E: .  When 
the laser field is changing rapidly, the external photon is only sensitive to its average 
square value. 

Let us now consider the experimental situation. The proposed experiments [ 11 
would have electric fields of Eo = 8.1 x 1OI2 V m-’, an optical laser with a frequency of 

et = Eo( 1 f 0,O) 
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w L  = 4 eV and external photons with a maximum frequency of about w = 37 GeV. Thus 

4 k .  p / m 2 = 8 w w L / m 2 = 4 . 5  

e 2 k .  f 9 f * * k / m 2  = ( e E o / m ’ ) ’ ( w / m ) ’  = 0.195 

p k -  f. f* k / m 2 = ( 2 a / 4 5 r r ) ( e E o / m 2 ) 2 ( w / m ) 2 = = 2 . 0 x  

Based on the comparison with the numerical results mentioned above, we might expect 
the Euler-Heisenberg approximation to be reasonably good, even for the maximum 
frequency. The condition for the frequency to be high compared to the intensity: 
pk + f f * . k << 4 k .  p is extremely well satisfied. Assuming a circularly polarised laser, 
the maximum index of refraction from equation (16) is: 

n - 1 = ( 1  l a / 4 5 r r ) (  eEO/m2)’  = 2.1 x 

The amplitude for adsorption (or emission) of a pair of laser photons, with an 
accompanying spin flip is, from equation (15b): 

A = 3 p k *  f f * k / 4 k *  p = 1.3 x 

These effects are both extremely tiny at the proposed intensities and frequencies. With 
an increase in laser intensity by two or three orders of magnitude, they would become 
observable. 
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